Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.626
Filtrar
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38465512

RESUMO

Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.


Assuntos
Polaridade Celular , Células Epiteliais , Animais , Humanos , Células Epiteliais/metabolismo , Membrana Celular/metabolismo , Polaridade Celular/genética , Mamíferos
2.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488018

RESUMO

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Ciclo Celular/genética , Polaridade Celular/genética , Embrião não Mamífero/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(9): e2322582121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381787

RESUMO

Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.


Assuntos
Proteínas de Drosophila , Humanos , Criança , Animais , Camundongos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Polaridade Celular/genética , Drosophila/genética , Transdução de Sinais/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Mol Biol Cell ; 35(2): br5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991903

RESUMO

Loss of cell polarity and disruption of tissue organization are key features of tumorigenesis that are intrinsically linked to spindle orientation. Epithelial tumors are often characterized by spindle orientation defects, but how these defects impact tumor formation driven by common oncogenic mutations is not fully understood. Here, we examine the role of spindle orientation in adult epidermis by deleting a key spindle regulator, LGN, in normal tissue and in a PTEN-deficient mouse model. We report that LGN deficiency in PTEN mutant epidermis leads to a threefold increase in the likelihood of developing tumors on the snout, and an over 10-fold increase in tumor burden. In this tissue, loss of LGN alone increases perpendicular and oblique divisions of epidermal basal cells, at the expense of a planar orientation of division. PTEN loss alone does not significantly affect spindle orientation in these cells, but the combined loss of PTEN and LGN fully randomizes basal spindle orientation. A subset of LGN- and PTEN-deficient animals have increased amounts of proliferative spinous cells, which may be associated with tumorigenesis. These results indicate that loss of LGN impacts spindle orientation and accelerates epidermal tumorigenesis in a PTEN-deficient mouse model.


Assuntos
Epiderme , Fuso Acromático , Animais , Camundongos , Fuso Acromático/genética , Células Epidérmicas , Carcinogênese , Polaridade Celular/genética
6.
Hum Mol Genet ; 33(2): 150-169, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37815931

RESUMO

Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.


Assuntos
Cardiopatias Congênitas , Peixe-Zebra , Animais , Humanos , Polaridade Celular/genética , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Cardiopatias Congênitas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
7.
J Biol Chem ; 300(2): 105579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141764

RESUMO

Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.


Assuntos
Antígenos de Diferenciação Mielomonocítica , Ligantes , Ativação Linfocitária , Linfócitos T , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Polaridade Celular/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Transdução de Sinais , Linfócitos T/imunologia , Humanos
8.
FASEB J ; 38(1): e23346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095297

RESUMO

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Assuntos
Deficiência de Ácido Fólico , Defeitos do Tubo Neural , Animais , Camundongos , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridade Celular/genética , Fibroblastos/metabolismo , Via de Sinalização Wnt , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Deficiência de Ácido Fólico/metabolismo
9.
J Cell Mol Med ; 27(24): 4133-4144, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864310

RESUMO

Cisplatin (CDDP) chemoresistance is one of the predominant factors in oral squamous cell carcinoma (OSCC) treatment failure. Uncovering the mechanisms underlying CDDP resistance is of great importance in OSCC therapy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs, which are reported to participate in the progression of various diseases, including cancer. However, the function of circRNAs in CDDP resistance in OSCC remains unclear. Quantitative reverse transcription PCR was used to search for different circRNAs between OSCC cell lines and CDDP-resistant cell lines. The results showed that circ-ILF2 expression was higher in CDDP-resistant OSCC cell lines. The stability of circ-ILF2 was also confirmed using RNase R and actinomycin D assays. Functional experiments, including cytotoxicity, apoptosis and growth rate assays, showed that upregulation of circ-ILF2 contributes to CDDP resistance. Luciferase reporter-gene, RNA pull-down and quantitative real-time PCR (RT-qPCR) assays showed that circ-ILF2 functions as a microRNA sponge for miR-1252. Luciferase reporter assays, RNA pull-down, RT-qPCR and Western blotting showed that miR-1252 directly targeted and regulated the expression of KLF8. Circ-ILF2 plays an important role in CDDP resistance in OSCC. Circ-ILF2 exerts its function through the miR-1252/KLF8 pathway. In addition, tumour-associated macrophages (TAM) play important roles in cancer progressions, our results showed that circ-ILF2 in OSCC cells induced the M2 polarization of macrophages which provided new thoughts on immunotherapy. Our results suggest that circ-ILF2 may represent a potential therapeutic target in CDDP-resistant OSCC.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , RNA Circular/genética , RNA Circular/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/fisiopatologia , Polaridade Celular/genética , Humanos
10.
Nat Commun ; 14(1): 6504, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845215

RESUMO

How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Variações do Número de Cópias de DNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polaridade Celular/genética
11.
PLoS Genet ; 19(7): e1010849, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463168

RESUMO

Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.


Assuntos
Polaridade Celular , Proteínas Desgrenhadas , Proteínas de Drosophila , Proteínas de Membrana , Animais , Camundongos , Polaridade Celular/genética , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação
12.
Nephron ; 147(12): 721-724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459847

RESUMO

Almost every cell in the kidney, including renal tubular epithelial cells, has a primary cilium, which is a membrane-bound, hair-like structure protruding from the cellular surface. Dysfunction of primary cilia has been linked to a wide spectrum of human genetic diseases, termed ciliopathies. Planar cell polarity (PCP) refers to the coordinated alignment of cells along the cell sheet or tissue plane, a fundamental process in embryo development and organogenesis. Interestingly, there is evidence that primary cilium and PCP are interconnected. However, very limited is known about the involvement of cilia and PCP in kidney injury and repair. By using cell and mouse models, we have demonstrated a protective role of primary cilia in acute kidney injury. Mechanistically, we unveiled a reciprocal promoting relationship between cilia and autophagy in kidney tubular cells, and, accordingly, cilia may protect tubular cells by enhancing autophagy. Our recent studies further demonstrated that PCP dysfunction exaggerates acute kidney injury and may also contribute to maladaptive kidney repair after acute kidney injury. These findings provide a novel dimension to further understanding kidney injury and repair from the standpoint of cell biology.


Assuntos
Injúria Renal Aguda , Cílios , Camundongos , Animais , Humanos , Cílios/metabolismo , Polaridade Celular/genética , Rim , Injúria Renal Aguda/metabolismo
13.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511262

RESUMO

Establishing apicobasal polarity, involving intricate interactions among polarity regulators, is key for epithelial cell function. Though phosphatase of regenerating liver (PRL) proteins are implicated in diverse biological processes, including cancer, their developmental role remains unclear. In this study, we explore the role of Drosophila PRL (dPRL) in photoreceptor cell development. We reveal that dPRL, requiring a C-terminal prenylation motif, is highly enriched in the apical membrane of developing photoreceptor cells. Moreover, dPRL knockdown during retinal development results in adult Drosophila retinal degeneration, caused by hid-induced apoptosis. dPRL depletion also mislocalizes cell adhesion and polarity proteins like Armadillo, Crumbs, and DaPKC and relocates the basolateral protein, alpha subunit of Na+/K+-ATPase, to the presumed apical membrane. Importantly, this polarity disruption is not secondary to apoptosis, as suppressing hid expression does not rescue the polarity defect in dPRL-depleted photoreceptor cells. These findings underscore dPRL's crucial role in photoreceptor cell polarity and emphasize PRL's importance in establishing epithelial polarity and maintaining cell survival during retinal development, offering new insights into PRL's role in normal epithelium.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Fígado/metabolismo , Polaridade Celular/genética
14.
Science ; 381(6653): 54-59, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410832

RESUMO

Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.


Assuntos
Arabidopsis , Divisão Celular Assimétrica , Epiderme Vegetal , Folhas de Planta , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Linhagem da Célula , Polaridade Celular/genética , Citoesqueleto , Mitose/genética , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Epiderme Vegetal/citologia , Epiderme Vegetal/genética
15.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039156

RESUMO

Non-canonical/ß-catenin-independent Wnt signaling plays crucial roles in tissue/cell polarity in epithelia, but its functions have been less well studied in mesenchymal tissues, such as the skeleton. Mutations in non-canonical Wnt signaling pathway genes cause human skeletal diseases such as Robinow syndrome and Brachydactyly Type B1, which disrupt bone growth throughout the endochondral skeleton. Ror2 is one of several non-canonical Wnt receptor/co-receptors. Here, we show that ror2-/- mutant zebrafish have craniofacial skeletal defects, including disruptions of chondrocyte polarity. ror1-/- mutants appear to be phenotypically wild type, but loss of both ror1 and ror2 leads to more severe cartilage defects, indicating partial redundancy. Skeletal defects in ror1/2 double mutants resemble those of wnt5b-/- mutants, suggesting that Wnt5b is the primary Ror ligand in zebrafish. Surprisingly, the proline-rich domain of Ror2, but not its kinase domain, is required to rescue its function in mosaic transgenic experiments in ror2-/- mutants. These results suggest that endochondral bone defects in ROR-related human syndromes reflect defects in cartilage polarity and morphogenesis.


Assuntos
Condrócitos , Peixe-Zebra , Animais , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Polaridade Celular/genética , Condrócitos/metabolismo , Morfogênese/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Wnt/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
16.
Curr Top Dev Biol ; 154: 1-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100515

RESUMO

A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.


Assuntos
Polaridade Celular , Células Epiteliais , Animais , Polaridade Celular/genética , Epitélio/metabolismo , Caderinas/metabolismo , Actinas/metabolismo
17.
Curr Top Dev Biol ; 154: 223-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100519

RESUMO

Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.


Assuntos
Caderinas , Proteínas de Drosophila , Animais , Humanos , Caderinas/genética , Caderinas/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Crescimento e Desenvolvimento , Proliferação de Células , Polaridade Celular/genética , Drosophila melanogaster , Mamíferos/genética , Mamíferos/metabolismo
18.
Curr Top Dev Biol ; 154: 245-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100520

RESUMO

Mammary gland development and breast cancer progression are associated with extensive remodeling of epithelial tissue architecture. Apical-basal polarity is a key feature of epithelial cells that coordinates key elements of epithelial morphogenesis including cell organization, proliferation, survival, and migration. In this review we discuss advances in our understanding of how apical-basal polarity programs are used in breast development and cancer. We describe cell lines, organoids, and in vivo models commonly used for studying apical-basal polarity in breast development and disease and discuss advantages and limitations of each. We also provide examples of how core polarity proteins regulate branching morphogenesis and lactation during development. We describe alterations to core polarity genes in breast cancer and their associations with patient outcomes. The impact of up- or down-regulation of key polarity proteins in breast cancer initiation, growth, invasion, metastasis, and therapeutic resistance are discussed. We also introduce studies demonstrating that polarity programs are involved in regulating the stroma, either through epithelial-stroma crosstalk, or through signaling of polarity proteins in non-epithelial cell types. Overall, a key concept is that the function of individual polarity proteins is highly contextual, depending on developmental or cancer stage and cancer subtype.


Assuntos
Neoplasias da Mama , Células Epiteliais , Feminino , Humanos , Epitélio/metabolismo , Células Epiteliais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transdução de Sinais/genética , Morfogênese/genética , Polaridade Celular/genética
19.
Sci Rep ; 13(1): 3905, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890135

RESUMO

Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.


Assuntos
Caderinas , Tubo Neural , Camundongos , Animais , Tubo Neural/metabolismo , Caderinas/genética , Caderinas/metabolismo , Polaridade Celular/genética , Via de Sinalização Wnt/fisiologia , Epitélio
20.
Acta Neuropathol Commun ; 11(1): 29, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803301

RESUMO

Congenital hydrocephalus is a common condition caused by the accumulation of cerebrospinal fluid in the ventricular system. Four major genes are currently known to be causally involved in hydrocephalus, either isolated or as a common clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. Here, we report 3 cases from 2 families with congenital hydrocephalus due to bi-allelic variations in CRB2, a gene previously reported to cause nephrotic syndrome, variably associated with hydrocephalus. While 2 cases presented with renal cysts, one case presented with isolated hydrocephalus. Neurohistopathological analysis allowed us to demonstrate that, contrary to what was previously proposed, the pathological mechanisms underlying hydrocephalus secondary to CRB2 variations are not due to stenosis but to atresia of both Sylvius Aqueduct and central medullar canal. While CRB2 has been largely shown crucial for apico-basal polarity, immunolabelling experiments in our fetal cases showed normal localization and level of PAR complex components (PKCι and PKCζ) as well as of tight (ZO-1) and adherens (ß-catenin and N-Cadherin) junction molecules indicating a priori normal apicobasal polarity and cell-cell adhesion of the ventricular epithelium suggesting another pathological mechanism. Interestingly, atresia but not stenosis of Sylvius aqueduct was also described in cases with variations in MPDZ and CCDC88C encoding proteins previously linked functionally to the Crumbs (CRB) polarity complex, and all 3 being more recently involved in apical constriction, a process crucial for the formation of the central medullar canal. Overall, our findings argue for a common mechanism of CRB2, MPDZ and CCDC88C variations that might lead to abnormal apical constriction of the ventricular cells of the neural tube that will form the ependymal cells lining the definitive central canal of the medulla. Our study thus highlights that hydrocephalus related to CRB2, MPDZ and CCDC88C constitutes a separate pathogenic group of congenital non-communicating hydrocephalus with atresia of both Sylvius aqueduct and central canal of the medulla.


Assuntos
Aqueduto do Mesencéfalo , Hidrocefalia , Humanos , Aqueduto do Mesencéfalo/patologia , Polaridade Celular/genética , Hidrocefalia/patologia , Proteínas , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Peptídeos e Proteínas de Sinalização Intracelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...